منابع مشابه
The Existence of Dual Modules
In this note we show that a Noetherian module has a dual module if and only if it satisfies AB5*. A connection between completeness and AB5* is also established. In this note we relate completeness, quasi-completeness, the A B5* condition, and duality. The main result is that a Noetherian R-module has a dual module if and only if it satisfies A B5*. Throughout this note R will denote a commutat...
متن کاملT-dual Rickart modules
We introduce the notions of T-dual Rickart and strongly T-dual Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that every free (resp. finitely generated free) $R$-module is T-dual Rickart if and only if $overline{Z}^2(R)$ is a direct summand of $R$ and End$(overline{Z}^2(R))$ is a semisimple (resp. regular) ring. It is sho...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولDual Modules
Let R be a commutative ring. For two (left) R-modules M and N , the set HomR(M,N) of allR-linear maps fromM toN is anR-module under natural addition and scaling operations on linear maps. (If R were non-commutative then the definition (r · f)(m) = r · (f(m)) would yield a function r · f from M to N which is usually not R-linear. Try it!) In the special case where N = R we get the R-module M∨ = ...
متن کاملt-dual rickart modules
we introduce the notions of t-dual rickart and strongly t-dual rickart modules. we provide several characterizations and investigate properties of each of these concepts. it is shown that every free (resp. finitely generated free) $r$-module is t-dual rickart if and only if $overline{z}^2(r)$ is a direct summand of $r$ and end$(overline{z}^2(r))$ is a semisimple (resp. regular) ring. it is sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1976
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1976-0399067-5